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ON THE CENTRALIZER OF INVARIANT
FUNCTIONS ON A HAMILTONIAN G-SPACE

EUGENE LERMAN

Abstract

A Hamiltonian action of a Lie group G on a symplectic manifold M~
gives rise to a moment map J: M — g*, where g* is the dual space to
the Lie algebra g of G. The functions on M that are pullbacks of func-
tions on g* by the moment map form a Poisson subalgebra of C*®(M).
Such functions are called collective. Assume that G and M are compact
and connected. It is easy to see that the centralizer of collective func-
tions in C°(M) consists of G-invariant functions. It was conjectured
by Guillemin and Sternberg in [3] that the converse is also true, namely
that the centralizer of the invariants is the set of collective functions.
The main result of this paper is the proof of the conjecture in the case
where the image of the moment map misses the walls of Weyl chambers
in g*, i.e., when the stabilizers under the coadjoint action of the points
in J(M) are all tori. An example shows that if J(Af) intersects the walls,
the conjecture may fail.

Introduction

Let G be a compact connected Lie group acting on a compact connected
symplectic manifold M with an (equivariant) moment map J: M — g*.
A function f on M is said to be collective if it is a pullback by the moment
map of a smooth function ¢ on g*, f =¢o J.

C>°(M) and C*(g*) are Lie algebras under Poisson bracket. In addition
the Poisson bracket has the derivation property,

{fLiia} =L/, i3+ [l )

The map J*: C®(g) — C*°(M), ¢ — J*¢ induced by J is a morphism of
Poisson algebras. Thus collective functions form a subalgebra of C°(M).
Another subalgebra of C*°(M) is the set of G-invariant functions C*(M)°,

The two subalgebras are related. For a subset 4 of C*°(M) define the
centralizer of A to be the set of all functions that Poisson commute with
the functions in A4, and denote it by 4°. (Note that in [3] A¢ is called
the commutant of 4.) A° is a subalgebra for any 4. The centralizer of
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the collective functions is the set of invariants. Indeed, if £ € g, then
& € C™(g*) and {£ o J, f} = &y (f), where &y is the vector field on A
induced by £.

Guillemin and Sternberg conjectured in [3] that the converse is true,
namely that the centralizer of the invariants consist .of the collective func-
tions, .

(%) (Co(M)®) = J*C=(g").

They proved the conjecture in two special cases. Clearly the collective
functions are contained in (C*°(M)%)¢. There are two obstructions for
the equality to hold.

The first one is the connectedness of the level sets of the moment map.
Indeed, let ¢ be a regular value of the moment map J. By Sard’s theo-
rem there exists a neighborhood U of ¢ in g* consisting of regular values.
Since J is proper, J: J~!(U) — U is a fibration. Suppose J~!(c) is not
connected. Let W}, W, be components of J—!(U). Consider two smooth
functions ¢, ¢, on g* supported in U. Let f = J*¢ | W) + J*p2|W,. Then
f is a smooth function on M, it commutes with the invariants but it is
not collective. Note that for a torus the level sets of the moment map are
always connected [1].

The second obstruction is the singularities of the moment map. A
function f € (C*®(M)Y)° may be of the form J*¢ but ¢ need not be
smooth. Consider for example the action of SU(2) on' M = C2. In
this case C>(M)SY(?) consists of the functions of |z|2. So (C*®(M)SU2)e
contains |z|?, but |z|? is not collective. Note however that (|z|?)? is con-
tained in J*C>(su(2)*), and that J* C*°(su(2)*) together with |z|? generate
(C®(M)SY2)e, In the example the manifold C? is not compact. However
the action SU(2) on C? can be easily “compactified” to an action of SU(2)
on CP2, ‘

Under certain restrictions on the image of the moment map the equality
(*) holds.

Theorem 1. Let G, M, J: M — g* and C®(M)C be as above. If J(M)
misses the walls of the Weyl chambers in g*, i.e., if stabilizers of points in
J(M) are all tori, then the centralizer of the invariants is collective,

(C=(M)O) = J*C=(g").

We shall reduce the proof of Theorem 1 to that of a special case, namely,

Theorem 2. Let G be a torus. Then the centralizer of the invariants is
collective, i.e., (C®(M)C)¢ = J*C>®(g*).

Theorem 1 does not settle the issue completely. It may very well happen
that the image contains bad points and yet (*) still holds.
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The strategy of the proof is as follows. First, using local normal form
theorems for the moment map ([4], [5], [6]) we explicitly compute the
action and the moment map in a neighborhood of an orbit. Then we show
that (*) holds in such a neighborhood. Using connectedness of level sets
of toral moment maps we show that (x) holds in a neighborhood of a level
set. A partition of unity argument finishes the proof. Finally we prove
that Theorem 2 implies Theorem 1.

A few useful facts

We recall a few facts about the moment map. By the definition of the
moment map we have

(#) (dJp(v),8) = [i(Eu(p))wpl(v),
where p e M, v € TM,, £ € g, and &y denotes the vector field induced on
M by &. The set {&4(p): £ € g} is the tangent space to the G-orbit through
p. Hence

Proposition 1. The symplectic perpendicular to the tangent space to the
orbit at p is the kernel of dJ,. The image of dJ, is the annihilator of the
Lie algebra of the stabilizer group of p. In particular, dJ, is surjective if
and only if the stabilizer of p is discrete.

Suppose J(p) in g* is fixed by G. Let &, n be vectors in g. Since J is
equivariant, dJ,(ny(p)) = Ny+(J(p)). Since J(p) is fixed, the vector field
ng+ induced by the coadjoint action is zero at p. By (#)

0 = (ng-(J (1)), &) = 0p(Ems (D), Mas (P))-

We have proved

Lemma 1. If J(p) is a fixed point of the coadjoint action of G, then the
orbit G - p is isotropically embedded in M.

One more preliminary remark. Let NV be any manifold, P be a Poisson
manifold and f be a function on P. Then we may consider the Hamilto-
nian vector field Z; of f on P to be a vector field on N x P. Alternatively,
we can make N x P into a Poisson manifold by taking the bracket to be
zero on N, and then consider the Hamiltonian vector field of f, which is
also a smooth function on N x P, with respect to the Poisson structure on
N x'P,

Proof of Theorem 2

We now begin proving Theorem 2. Till the end of the proof, assume
that G is a torus. Then G-orbits are isotropically embedded. In [4] and
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[5] Guillemin and Sternberg give a recipe for computing the moment map
near an isotropic orbit. . C.-M. Marle gives a similar recipe in [6]. The
computation relies on Weinstein’s isotropic embedding theorem.

Theorem (Isotropic embedding). Any isotropic embedding i: X — M
defines a symplectic normal bundle N(i) — X where N(i) = TX*TX. If f
is a symplectic diffeomorphism defined on some neighborhood of i,(X) and
satisfying

i = folij,
where Iy, i, are isotropic embeddings of X, then f induces a symplectic
isomorphism, Ls: N(i1) — N(i) of the corresponding symplectic normal
bundles. Conversely, given any symplectic isomorphism L: N(i;) — N(i2)
there exists an f with L = Ly.

In a presence of a compact group K of automorphisms, all of the above
assertions are true in the category of K morphisms.

Let Z = G-p be an orbit, i: Z — M be its embedding, N(i) = TZ+/TZ
be its symplectic normal bundle, V' = TZpi /T Z, be a typical fiber of N(i),
and S be the stabilizer of p. S is a compact abelian subgroup of G, and
G is a principal S-bundle over Z. S acts symplectically on V. We have a
surjection

G x V — N(i), (g,v)— g-v.

It is easy to see that the map factors through an isomorphism of symplectic
G-bundles G xg V — N(i).

We construct a Hamiltonian G-space Y and an isotropic embedding j
of Z into this space so that N(j) is isomorphic to N(i) as a symplectic
G-vector bundle. Then the embedding j: Z — Y serves as a model for
i:Z — M. More precisely, by the isotropic embedding theorem there
exist neighborhoods U; and U; of i(Z) and j(Z) respectively and a G-
equivariant symplectic diffeomorphism ¥: U; — U; so that j = ¥o i.

Suppose first that S is connected. Then S is a torus and G ~ K x S for
some torus K; K is isomorphic to Z. Then

GxsV=(KxS)xsVaxKxV.

Here G = K xS acts on K x V" as follows: K acts on X by the multiplication
on the right and trivially on ¥, S acts symplectically on V' and trivially
on K. Consider X = T*K x V. Identify T*K with £* x K. K acts
symplectically on T*K with a moment map Pg equal projection on the
first factor. S acts symplectically on 7 with the resulting moment map
®dg: V — s*. We see that X is a Hamiltonian G space with a moment map

O = (Pg, Ps): T'K x V — F* x5* ~ g°.
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Now j: K — T*K x V is a model for i: Z — M. Indeed it is enough to
observe that N(j) ~ K x V and that the action of G on N(j) is the right
one.

In general let Sy be the identity component of S. Then S = D x S, for
some discrete subgroup D of G. Choose a torus K containing D so that
G = K x Sy. Then the orbit Z is isomorphic to K/D, and the symplectic
normal bundle N (i) is isomorphic to (K x V)/D = K xp V. The action
of G on K x V projects to an action of G on (K x V)/D. Consider the
manifold Y = (7*K x V')/D. It is a Hamiltonian G-space and the moment
map ®Y makes the diagram

X
X=TKxV-2.g*

ln /<1>Y
Y=(T"KxV)/D

commute. Y is a vector bundle over K/D, so Z embeds in Y as zero sec-
tion. Moreover the symplectic normal bundle of the embedding j': Z — Y
is isomorphic to (K x V)/D. In other words j': Z — Y is a model for
i:Z—- M.

We use the model to prove

Lemma 2 (Centralizer of invariants is locally collective ). If a function
f commutes with all G-invariant functions on M, i.e., if f € (C®(M)%),
then for any point p in M there exist an open set W in M containing p and
a function ¢ in C®(g*) so that f | W =¢oJ | W.

But first we need two rather technical results. Let ¥ be a symplectic
vector space, S be a compact abelian group acting symplectically on V" and
So be the identity component of S. Then S = D x S for some discrete
group D. The first result that we need is that if a function f € C®(V)
Poisson commutes with all Sy-invariant functions on V', then it commutes
with all S-invariant functions as well. This is a special case of the following
proposition.

Proposition 2. Let K be a compact Lie group and D be a finite group
acting on a Poisson manifold M. Assume further that the Poisson actions
of K and D commute. If f is a function in C° (M) that commutes with all
K x D invariant functions on M, then for any h € C°(M)X

{f,h}=0.
Proof. The main idea is to show that for a generic point x in M and

for any function 4 in C®°(M)X there exists a function /p in C®(M)K*D
so that & = hp near x. For then we have

{/,h}(x) = {f, hp}(x) = 0.
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The construction of such a function Ap relies on the theorem about the
principal orbit type. We need to recall a few facts concerning the actions of
compact groups. See, for example, [2] for proofs and historic references.
Given a subgroup H of K denote by (H) the class of subgroups of K
that are conjugate to H.
Proposition A. Ler H be a stabilizer subgroup of K. Then

My = {x € M: stabilizer of x is conjugate to H}

is a submanifold of M (which may have components of different dimen-
Sions). :
Proposition B (principal orbit type). There exists a unique stabilizer
type (H), the principal orbit type, such that My is open and dense. Each
other stabilizer type H' satisfies (H) < (H'), i.e., H is subconjugate to H'.

Proposition B implies that for any x in My, the normal bundle to the
orbit K -x is trivial. Hence the orbit space My, /K is a manifold, and My,
fibers over it with a typical fiber being K/H, n: Myy — My)/K. The ac-
tion of D preserves My and descends to an action on My, /K. For some
normal subgroup D’ of D, D/D’ acts effectively on My)/K. Moreover,
since D/D’ is finite there exists a dense open subset W of M /K on
which the action is free. Let My = n~!(W); My is a dense open subset of
M, the set of generic points in the statement of the proposition. Note that
any K-invariant function on M is D'-invariant.

For x in My consider m(x). Since the action of D/D’ on W is free, there
exists a neighborhood U of 7(x) so that

dD' . UNU =@ fordD # D'

Choose a bump function 7’ supported in U with 7/ = 1 near n(x), and set
7 = 7' o . Then 7 is K-invariant and, for any y near x, t(d - y) is 1 if
d € D' and 0 otherwise. Now for 4 in C®°(M)X set

ho(y) = 157 So(Eh)(@ ).
. deD
The function Ap is K x D invariant and is equal to # near x. This proves
Proposition 2.

In [2] Guillemin and Sternberg proved that for a toral action on a vector
space the centralizer of the invariant functions is collective. An examina-
tion of the proof shows that a somewhat more general statement holds.

Proposition 3 (c.f. Proposition 4.1 in[4]). Let N be any manifold and
S — Sp(W) be a symplectic representation of a torus S. (Then the action
of § on W is Hamiltonian with the moment map J: W — s* given by
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2, J(0)) = w(&v,v) forv eV, Ees — sp(W). Here w is the symplectic
Jorm on W.) N x W is a Poisson manifold with the bracket being zero on
N. If a function f € C*®°(N x W) Poisson commutes with all S-invariant
Sfunctions on W, then there exists a smooth function ¢ on N x s* so that
f(m,v) = ¢(m, J(v)).

Proof of Lemma 2. Since a small enough neighborhood of the orbit
Z in M is equivalent to a neighborhood of Z in the model space Y, it
suffices to prove the lemma for the functions on Y. We need to show
that if a function on Y commutes with all G-invariant functions, then it is
collective. For that it is enough to prove that its pullback to the covering
space X is collective. Let f be such a pullback. We will show that there
exists a function ¢ in C*°(g*) such that at any point (#,a,v) € *xKxV =
X

f(n,a,v) = ¢(n,J" (v)),

where JV: V — s* is the moment map on ¥ coming from the action of
AYS

Since the covering map n: X — Y is a Poisson map, / commutes with
pullbacks of G-invariant functions on ¥ = € x (K xp V). That is, f
commutes with all G-invariant functions on X that are also D-invariant.

Consider a vector & in &. We can think of it as a smooth G- and D-
invariant function on X. Hence its bracket with f is zero. But {f, £} being
zero for all £ in € implies that f is K-invariant. Thus f is constant along
K. f also commutes with all S-invariant functions on ¥. By Proposition
2, f commutes with Sp-invariant functions. (Note that if S is discrete,
then KX is simply G and Proposition 2 says that f is constant on V. So f
is a function of &* alone, and this proves Lemma 2 in the special case.)

In general by Proposition 3 there exists a smooth function ¢ on
(£* x K) x s* so that f(n,a,v) = ¢(n,a,JV (v)). But f does not depend on
a, so ¢ is a smooth function on &* x s* = g*.

This concludes the proof of Lemma 2.

Remarks. 1. Note that Lemmma 2 holds with parameters. Let N be a
manifold and Y be as above. Extend the Poisson bracketon ¥ to N x ¥
by zero. Suppose that f in C®(N x Y) has the property that {4, f} = 0 for
any function 4 in C*°(Y)C. Then there exists a function F € C*(N x Y)
so that

f(,y) = F(p,®" ()

for (p,y)e Nx7Y.
We shall need this observation to prove Theorem 1.
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2. The image of Y under the moment map ®7 is a linear cone
C=tx{B:B=) tjxj,t; >0} Ct xs" =g".
So under the moment map J: M — g* the image of a sufficiently small
neighborhood of the orbit G - p is of the form (a + C) N W, where W is
an open set in g* about a = J(p). More generally we have

Lemma 3. There exist a neighborhood U of the level set J~'(a) whose
image under J is of the form (a+ C) N W' where W' is an open set in g*
about a and C is as above.

ProoF. We know that the image of a small neighborhood of a point
in J~!(a) is an open subset of some cone C’ translated to a. The point
of the lemma is that the cone does not vary along the level set. This
follows from two observations. First of all J~!(a) is connected, so it is
enough to show that the cone does not vary locally. But the local behavior
is modeled by (Y, ®Y), and along the zero level set of @ the cone does
not vary. Therefore for any ¢ in J~!(a) there exist open sets U, in M
containing ¢ and W, in g* containing a so that J(U,) = (a + C) N W,.
Since J!(a) is compact, there exist g,---,qr in J~!(a) such that the
corresponding sets Uy, - -+ , Uy cover J~!(a). The lemma now follows with
W =Wwnw,n . -nW.

Remark. We see from the proof of the lemma that J | U is an open
map into the translated cone « + C. So for any open set Uy C U there
exists an open set W in g* such that J(Up) = (a + C) N W.

Our next step is to improve on Lemma 2. We show the centralizer of
invariants is collective not just in a neighborhood of an orbit but in a
neighborhood of the whole level set.

Lemma 4. If f commutes with all G-invariant functions on M, i.e., if
[ € (C®(M)%), then for any o in g* there exist an open set U, containing
J~Ya) and a function ¢ in C*(g*) so that

flUs=60J | U

PrROOF. Choose an open set U in M about J~!(a) as in Lemma 3.
Then J(U) = (e + C) N W' for some open set W’ in g*. By Lemma 2 for
any ¢ in J~!(a) there exist an open set U(g) and a function ¢, in C*°(g*)
so that /| U(g) = ¢,0J | U(g). We may assume that U(g) C U for all
g. Since J~!(a) is compact, we can cover J ~!(a) by finitely many U(q),
say Uy = U(qy),---,UL = U(qr). Let ¢y, ---,¢r be the corresponding
functions in C*(g*). Since J~!(a) is connected, we may assume that
U;N Uy is nonempty for i=1,---, L.

We proceed by induction on L. Suppose for simplicity that L is 2, so
J Y a) cUNU,. Now f | Ui = ¢i0J | U; for i = 1,2 implies that
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é1 | J(UinU,y) = ¢2 | J(Uy N U,). By the remark after Lemma 3 there
exists an open set W' in g* so that J(U NU;) = (a+ C)NW". Let ¢ = ¢y,
and U, = J'(W"Yn(U nU,). Then f|U, = ¢poJ | U,.

It is clear now how the induction works in general.

A simf)le partition of unity argument finishes the proof of Theorem 2.
For a point « in J~!(a) there exist an open set U, in M, J~!(a) C U,, an
open set W{a) in g*, a cone C, and a function ¢, € C*(g*) so that

(1) J(U,) = (e + Co) N W(a) and

(i) | Uy =daod | U,.

J(M) is compact, hence there exist ay,---,a; in g* such that W =
W(ay), -, W; = W(a;) cover J(M). Let ¢y, --,¢; be the correspond-
ing functions in g*. Let W, be the compliment of J(M) in g*, i.e., let
Wy = g*\J(M). Choose a partition of unity {pg,---,ps} on g* subordi-
nate to {Wp, -, W;}; then {J*py, -+, J* ps} is a partition of unity on M
subordinate to {Uy,---,Us}. Let ¢ =3 p;p;. Then J*¢p =3 J*p;J*¢; =
>(J*pi)f = f. This finishes the proof of Theorem 2.

Corollary. Let N be a manifold, T a torus and P a Hamiltonian T-
space with moment map ®: P — t*. Extend the Poisson bracket on P
to N x P by zero. Suppose h in C®°(N x P) Poisson commutes with all
functions in C°(P)T. Then there exists a function by in C*®(N x t) so that

h(n,p) = bh(n, ®(p)).

Proof of Theorem 1

We now proceed with the proof of Theorem 1. Recall that G is a com-
pact connected Lie group acting on a compact connected symplectic man-
ifold M in a Hamiltonian fashion with a moment map J: M — g*. Put a
G-invariant metric on g*, and use it to identify g* with g. Let g, be the
set of regular elements of g, i.e., if

greg = {€ € g: stabilizer of £ is a torus}.

By assumption J (M) is contained in gr;. Fix a maximal torus T in G, let
t be its Lie algebra and let R be a connected component of t N g G is a
principal T-bundle over G/T. The map

G X R = greg, (8,8) — Adg(S)

is a surjection. It induces a G-equivariant bijection G xr R — greg. Here
G xr R denotes the associated fiber bundle over G/T with fiber R. The
moment map J is transversal to R, so F = J~!(R) is a submanifold of
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M. Moreover F is symplectic. (See Theorem 26.7 in [4].) Since the
inverse image of R under J equals the inverse image of its closure, F is
closed. The fact that M = J~!(g,,) and equivariance of J imply that A/
is diffeomorphic to G x¢ F as a G-space. More explicitly let

P1:GXxF—-GxrF

be the projection. Then the map G x7 F — M is given by pi(g,f) —
g - f. It is a well-known fact that G/T is simply connected. Since M
is a connected fiber bundle with a simply connected base its fiber F is
connected. ,

Let j = J | F. Then F is a Hamiltonian T-space, and j is a corre-
sponding 7-moment map. The map idxj: G x F — G x R induces a
G-equivariant map of fiber bundles G xg F — G xr R. Since J is also
G-equivariant the induced map equals J.

Let po: G x R — G X1 R be the projection. Then the map G X7 R — greg
is given by p,(g,r) — g-r. Let u: U — G be a local section of G — G/T.
4 induces trivializationsof 7,: G X7 F — G/T and 7,: G xr R — G/T:

$1:UXF —GxrF,  (,9)— pi(u(u)q),
¢$2: Ux R— GXxrR, (u, r) — pa(u(u), r).

Now

J(1(u,q) = J(p1((w),q)) = J(u(u) - q) = u(w)J(q)
= pu(w)j(q) = ¢2(p(u), j(q)).

Thus, with respect to the identifications, J | z7/(U): a7 (U) — =3 1(U)
is given by J(u, q) = (4, j(q))-

Since M = Gx7F there existsa 1-1 correspondence between G-invariant
functions on M and T-invariant functions on F. In one direction the cor-
respondence is simply restriction to the fiber. In the other direction, a
T-invariant function on F pulls up to a G- and T-invariant function on
G x F and so descends to a G-invariant function G x7 F.

This carries over to the correspondence between Hamiltonian vector
fields. (Recall that F is a symplectic submanifold.) That is, given a G-
invariant function f, restricting it to F and taking the Hamiltonian vector
field of the restriction is the same as taking the Hamiltonian vector field
=, of f and restricting it to F. To prove this it is enough to show that =,
is tangent to F. So let p be a point in F — G x F. Since [ is constant
along the orbit G- p, Z¢(p) lies in the symplectic perpendicular 7,(G - p)~.
By Proposition 1 we have T,(G - p)* = kerdJ,. But F = J~!(R) and J
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intersects R transversely. Hence 7, F contains ker dJ, and therefore E/(p)
lies in T,F.

Consider 4 in (C®(M)%)¢. Assume for a moment that the support of
h is contained in z7'(U) and that G — G/T is trivial over U. Then
77} (U) = U x F, and it follows from the discussion above that 4 is killed
by the Hamiltonian vector fields of the T-invariant fucntions on F. By
Corollary to Theorem 2, there exists a function h in C>°(U x t) so that
h(u, £) =9y, j(N). Thus H = J*¢ for some ¢ in C*®(g) (= C>(g*)).

In general let {U;} be a cover of G/T such that the G | U; are trivial.
Choose a partition of unity {o;} subordinate to the cover. Then {n}go;}
is a partition of unity on G xy F and each 7n}o; is supported in nl'l (Uy).
Moreover, since m; = 7 o J, niog; are collective. Therefore if 4 is in
(C(M)9), then (n}o;) - h are also in (C°(M)®)°. But by the discussion
above (nj0o;) - h are collective, and so & = ) _(n}0;) - h is also collective.

This finishes the proof of Theorem 1.
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